CWC '19

Abdulaziz Alawad Faisal Alrashidi Naser Alrashidi Tanner Lehr Riley Sinek

Project Description

- U.S. Department of Energy is our sponsor
- Collegiate Wind Competition- U.S. Department of Energy
 - Competition held in Boulder, Co May 13th-14th
 - Fifth team representing NAU at the Competition
 - Working with Electrical Engineering group

Black Box Model

- Main purpose of the turbine is to produce power
 - Result of harnessing the wind's kinetic energy and converting it to electrical power

Figure 1: Black Box Model

Hypothesized Functional Model

- Conversion from Kinetic Energy to Electrical Energy
- Complete Certain Tasks for Competition
- No human interaction during testing

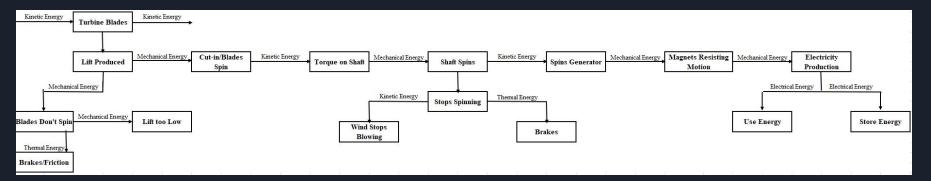


Figure 2: Hypothesized Functional Model

Concept Generation

- 5-4-5 method sketching (includes a few bio-inspired designs)
- Sketches done individually in own time

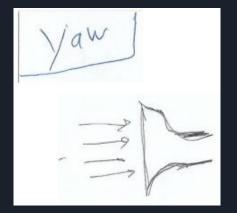


Figure 3: Yaw Concept Generation

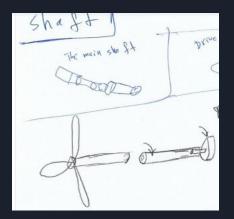
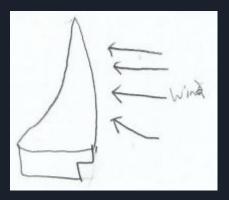


Figure 4: Shaft Concept Generation

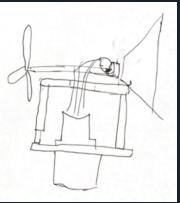

Riley

Blade Design Concepts

- Small blade:
 - Pros: Smaller amount of material, therefore easier to move
 - Cons: Not an optimum swept area
- Wide base:
 - Pros: Higher swept area, easier cut-in due to wide base
 - Cons: More material, will need more thrust to be propelled

Figure 5: Small Blade Design

Figure 6: Wide Base Blade Design



Nacelle Designs

- Side panels
 - Pros: Potential for yawing from nacelle
 - Cons: Less strong
- Hole design
 - Pros: Options for wire organization for electrical team
 - Cons: Crowded nacelle because of wires being directed towards front of design

Figure 7: Side Panel Nacelle Design

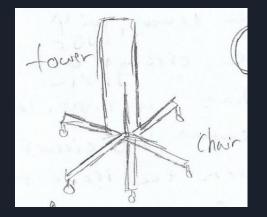


Figure 8: Hole Nacelle Design

Riley

Tower Design Concepts

- Rolly Chair
 - Pros: Lighter than a baseplate
 - Cons: Not stable or fastenable to comp. mount
- CWC '18
 - Pros: Sturdy design, can be fastened to mount
 - Cons: Strength over-designed, could be cheaper

7

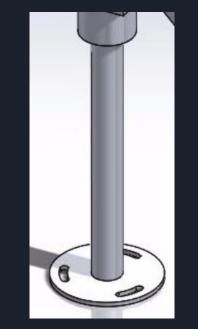


Figure 10: Round Tower Concept(CWC '18)

Abdulaziz

Yaw Design Concepts

- Tower Yaw
 - Pros: Compact and durable
 - Cons: Inefficient yawing power, too little surface area
- Angled Pyramid Scheme
 - Pros: Compact, strong and high efficiency
 - Cons: Heavier than other potential yaws

Figure 11: Tower Yaw Concept

Figure 12: Pyramid Concept

Brake Design Concept

- Linear Actuator (CWC '18)
 - Pros: Compact, high stopping power
 - Cons: Poorly designed, high cost
- Stepper
 - Pros: Strong stopping power and accurate
 - Cons: Less compact

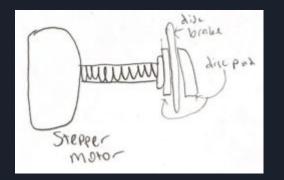


Figure 14: Stepper Motor Concept

Abdulaziz

Shaft Design Concept

- Hollow Shaft Design
 - Pros: Weight reduction, easier to rotate
 - Cons: Smaller cross-sectional area (less durable)
- Thick Diameter Ends
 - Pros: Durable at concentrated stress points (Larger cross-section)
 - Cons: Heavier than necessary, higher stress concentration at diameter changes

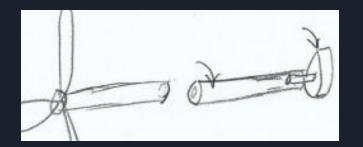


Figure 15: Hollow Shaft Concept

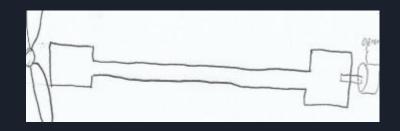


Figure 16: Thick Diameter Ends Concept

Pugh Chart - Blade

• Top 3 choices are Wide Base, Small Blade, and Betz Blade

		E	Blade(s)		·	
		Feather Blade	Small Blade	Wide Base	Heavy Blade	Betz Blade
	Concept	1	2	3	4	DATUM
Criteria						
Cost Effective		-	+		-	
Optimize efficiency			-	+	+	
Compact			+			
Low Cut-in		-		+	-	
Strong		-		+	+	
Durable		-	-		+	
Lightweight		+	+	-	-	
Portable/ease of assembly						
# of +'s		1	3	3	3	
# of -'s		4	2	1	3	
Sum		-3	1	2	0	

Table 1: Blade Concept Pugh Chart

Pugh Chart - Yaw

• Top 3 choices are Pyramid(tip), Pyramid(separate), and Rough

			Yaw							
		Active	Pyramid(tip)	Pyramid(separate)	Rough Surface	Tower Yaw	CWC '18			
	Concept	1	2	3	4	5	DATUM			
Criteria										
Cost Effective					+	-				
Optimize efficiency		+	+	+	+	-				
Compact		+	+	+	+	+				
Low Cut-in										
Strong			+	+		+				
Durable		-								
Lightweight		-	+	+	+	-				
Portable/ease of assembly		-	+	+	+	+				
# of +'s		2	5	5	5	3				
# of -'s		4	0	0	0	3				
Sum		-2	5	5	5	0				

Table 2: Yaw Concept Pugh Chart

Pugh Chart - Nacelle

• Top 3 choices are open front/back, hole, and side panels

		CWC'18	Cubic	Hexagon	Pyramid	Oval	Open Front/Back	Side Panels	Hole
	Concept	DATUM	2	3	4	5	6	7	8
Criteria									
Cost Effective			-	-	-	-	-		
Cooling			-	-	-	-			
Yaw			+	+			+	+	
Compact			-	-	-	-	-		+
Low Cut-in									
Strong			-	-	+	+	-	-	
Durable									
Lightweight			-	-	-	-	-	-	+
Portable/ease of assembly			-	-	-	-	-		
# of +'s			1	1	1	1	1	1	2
# of -'s			6	6	5	5	5	2	0
Sum			-5	-5	-4	-4	-4	-1	2

 Table
 3: Nacelle Concept Pugh
 Chart

Pugh Chart - Shaft

• Top 3 choices are hollow, polymer, CWC '18

			Shafts						
		Hollow	Thick Ends	Polymer	Plain	CWC 18			
	Concept	1	2	3	4	DATUM			
Criteria									
Cost Effective		-		+	-				
Optimize efficiency		+		-					
Compact									
Low Cut-in		-	-		-				
Strong			+	- 1	+				
Durable		-			+				
Lightweight		+	-	+	-				
Portable/ease of assembly									
# of +'s		2	1	2	2				
# of -'s		3	3	3	4				
Sum		-1	-2	-1	-2				

Table 4: Shaft Concept Pugh Chart

Pugh Chart - Brakes

• Top 3 choices are CWC '18, dynamic, and stepper motor

			Brake Design							
		CWC '18	Dynamic	Hydraulic	Stepper Motor	Brushless	Yaw Brake			
Criteria	Concept	DATUM	1	2	3	4	5			
Cost Effective				-	+	-	+			
Optimize efficiency			-	-			-			
Compact			+	-	-	-				
Low Cut-in										
Strong			-	+	+		+			
Durable				+		Ξ.				
Lightweight			+	-	-	-	+			
Portable/ease of assembly			+	-	+	-	-			
# of +'s			3	2	3	0	3			
# of -'s			2	5	2	6	2			
Sum			1	-3	1	-6	1			

 Table 5: Brake Concept Pugh Chart

Pugh Chart - Tower

• Top choice was CWC '18 tower design

			Tower							
		Triangle	CWC '18	Rolly Chair	Tower Yaw	Wide Base	Mesh			
	Concept	1	DATUM	3	4	5	6			
Criteria										
Cost Effective		-		-	-	- 1	-			
Optimize efficiency				-	+		+			
Compact		-		-	-	-				
Low Cut-in					+					
Strong		+			-	+	-			
Durable		+			-	+	-			
Lightweight				+	-	-	+			
Portable/ease of assembly		-			-	-				
# of +'s		2		1	2	2	2			
# of -'s		3		6	6	4	3			
Sum		-1		-5	-4	-2	-1			

 Table 6: Tower Concept Pugh Chart

Design Matrix - Blades

• The best design will have a wider base

			Blade Design Concept(s)								
			Small Blade		Betz Blade	Wide Base					
Criteria	Weight(%)	Score	Weighted Score	Score	Weighted Score	Score	Weighted Score				
Cost Effective	12.87%	65	8.3655	60	7.722	60	7.722				
Optimize efficiency	7.63%	20	1.526	50	3.815	70	5.341				
Compact	13.77%	60	8.262	50	6.885	50	6.885				
Low Cut-in	13.32%	40	5.328	60	7.992	80	10.656				
Strong	11.68%	50	5.84	60	7.008	70	8.176				
Durable	11.80%	50	5.9	60	7.08	70	8.26				
Lightweight	9.43%	70	6.601	50	4.715	45	4.2435				
Portable/ease of assembly	10.70%	50	5.35	50	5.35	50	5.35				
		SUM=	47.1725	SUM=	50.567	SUM=	56.6335				

Table 7: Blade Decision Matrix

Decision Matrix - Yaw

• The best design will be the pyramid(separated tip)

			Yaw Concept(s)								
		Pyramid(Tip connection)	Pyrami	id(Separated tip)	Ro	Rough Surface				
Criteria	Weight(%)	Score	Weighted Score	Score	Weighted Score	Score	Weighted Score				
Cost Effective	12.87%	50	6.435	50	6.435	65	8.3655				
Optimize efficiency	7.63%	70	5.341	70	5.341	65	4.9595				
Surface Area normal to flow	13.77%	65	8.9505	65	8.9505	50	6.885				
Yaw Rate (Torque)	13.32%	70	9.324	70	9.324	60	7.992				
Strong	11.68%	70	8.176	70	8.176	60	7.008				
Durable	11.80%	70	8.26	70	8.26	60	7.08				
Lightweight	9.43%	40	3.772	40	3.772	70	6.601				
Portable/ease of assembly	10.70%	45	4.815	50	5.35	50	5.35				
		SUM=	55.0735	SUM=	55.6085	SUM=	54.241				

Table 8: Yaw Decision Matrix

Decision Matrix - Nacelle

• The best design will be the open nacelle with a hole in the bottom

			Nacelle							
		CWO	C'18 (Open)	Open	w/ access hole	9	Side Panels			
Criteria	Weight(%)	Score	Weighted Score	Score	Weighted Score	Score	Weighted Score			
Cost Effective	12.87%	65	8.3655	65	8.3655	50	6.435			
Optimize efficiency	7.63%	40	3.052	55	4.1965	60	4.578			
Compact	13.77%	70	9.639	85	11.7045	65	8.9505			
Low Cut-in	13.32%	1	0.1332	1	0.1332	1	0.1332			
Strong	11.68%	75	8.76	75	8.76	75	8.76			
Durable	11.80%	75	8.85	75	8.85	75	8.85			
Lightweight	9.43%	55	5.1865	60	5.658	45	4.2435			
Portable/ease of assembly	10.70%	35	3.745	40	4.28	50	5.35			
	91.2%	SUM=	47.7312	SUM=	51.9477	SUM=	47.3002			

Table 9: Nacelle Decision Matrix

Decision Matrix - Shaft

• The best design will be similar to CWC'18 design

			Shaft Design								
			Hollow		CWC'18	Polymer					
Criteria	Weight(%)	Score	Weighted Score	Score	Weighted Score	Score	Weighted Score				
Cost Effective	12.87%	40	5.148	60	7.722	50	6.435				
Optimize efficiency	7.63%	60	4.578	65	4.9595	45	3.4335				
Compact	13.77%	50	6.885	50	6.885	65	8.9505				
Low Cut-in	13.32%	65	8.658	60	7.992	70	9.324				
Strong	11.68%	50	5.84	60	7.008	40	4.672				
Durable	11.80%	50	5.9	60	7.08	40	4.72				
Lightweight	9.43%	65	6.1295	55	5.1865	70	6.601				
Portable/ease of assembly	10.70%	50	5.35	50	5.35	50	5.35				
		SUM=	48.4885	SUM=	52.183	SUM=	49.486				

Table 10: Shaft Decision Matrix

Decision Matrix - Brakes

• The best design will be using a stepper motor to initiate braking

			Brake								
		(CWC'18		Dynamic	Stepper Motor					
Criteria	Weight(%)	Score	Weighted Score	Score	Weighted Score	Score	Weighted Score				
Cost Effective	12.87%	35	4.5045	80	10.296	75	9.6525				
Optimize stopping power	7.63%	75	5.7225	40	3.052	80	6.104				
Compact	13.77%	40	5.508	65	8.9505	50	6.885				
Releasing Power	13.32%	15	1.998	60	7.992	70	9.324				
Strong	11.68%	65	7.592	60	7.008	75	8.76				
Durable	11.80%	50	5.9	50	5.9	75	8.85				
Control	9.43%	60	5.658	50	4.715	70	6.601				
Portable/ease of assembly	10.70%	5	0.535	60	6.42	45	4.815				
	91.2%	SUM=	37.418	SUM=	54.3335	SUM=	60.9915				

Table 11: Brake Design Decision Matrix

Decision Selection

• Based on Pugh Chart and Decision Matrix the best designs are:

Blade	Yaw	Nacelle	Shaft	Brake	Tower
Wide Base	Pyramid (Separated Tip)	Open with access hole	CWC '18 (Similar Design)	Stepper Motor	CWC '18 (Similar Design)

• All designs fit into criteria given by Department of Energy

Schedule

- Used Gantt project template in Excel
- Current position catching up to original schedule still, but further caught up than before

AtteragionBO60	PLAN	PLAN PNRATI +N	ACTEAL START	ACTEAL DERATI	Person Responsib Je	PERCENT	PERIODS 2 3 4 5 6 7 8 5 48 8 42 43
Wabrita Satup Wabrita	44	3	24	3	Abdalaata	100%	
Update(r)	15	78			Abdelanie	5%	
Hunre of Quality	15	 • 	15	2	Riley	100%	
Beachmarking	10	5	15	2	Tram	100%	
Berearch Derign(r)	30	-10	15	11	Tram	95%	
Cuncept Generation	28		25	-11	Tran	95%	
Ind. Analytical Report	42	38	42		E	152	
Derigning	-	28	31		RileghTanner	20%	
Blade Derign	55	12			Riley	10×	
Brake Derign	55	18			Tanarr	10×	
Tau Derign	55	100			Painel	102	
Nacalla	55	12			Haner	5×	
Tauer/Bareplate	55	5			Abdelanie	102	
callabaration	55	28			Riles	•×	
EE systems incorporation		28			RileghTanner	•×	
Saliduarke Madeling		12			Tanarr	*×	
Blade Madeling	65	-18			Riles	*×	
Tau Hadaling	65	10			Painal	●×	
Nacalla Mudaling	65	-11			Haner	•×	
Tauer/Bareplate Madeling	65	5			AbdaLasia	•×	
3D printing for prototype	300	0.0			Tanarr	•×	
Proliminery Report	s				Riles	20%	
Final Report	45	s			Haner	92	

Table 12: Gantt Chart Project Schedule

Budget

• Summary of costs and anticipated costs throughout the project

	Budget							
	Part	Cost		Reference				
Bought:	Blade 2B4:C630s Blade Swashplate	5	10.88	https://www.amazon.com/gp/product/8013V5HFXU/ref=oh_aui_detailpage_000_s00?le=UTF8&psc=1				
	4x8x3mm Rubber Shielded Ball Bearings	5	10.88	https://www.amazon.com/4x8x3mm-Rubber-Shielded-Bearings-MR84-2RS/dp/B019I2WVCA/ref=sr_1_1_sspa?s=toys-and-g				
	EL-Kit-003 UNO Project Super Starter Kit	5	38.12	https://www.amazon.com/EL-KIT-003-Project-Starter-Tutorial-Arduino/dp/B01D8KOZF4/ref=sr_1_2_sspa2s=electronics&i				
	3D Carbon Fiber Filament by iFun	5	35.93	https://www.amazon.com/lfun-Filament-Compatible-Dimensional-Requirements/dp/B0747P98Q9/ref=asc_df_B0747P98Q				
	2' of 1" OD 4130 Chromoly Steel	5	18.29	https://www.onlinemetals.com/merchant.cfm?pid=7337&step=4&id=250&CAWELAID=12029332000038245&CATARGETID=				
	2' of 1" Aluminum Square Tubing	5	4.67	https://www.onlinemetals.com/merchant.cfm?pid=20737&step=4&showunits=inches&id=1270⊤_cat=60				
	8" x 8" (0.5" thick) 6061-T6 Aluminum Plate	5	24.93	https://www.onlinemetals.com/merchant.cfm?pid=1250&step=4&showunits=inches&id=76⊤_cat=60				
	.125" 4130 Steel Sheet (12"x12")	5	31.67	https://www.onlinemetals.com/merchant.cfm?pid=20902&step=4&id=949				
	(12"x24") 6061-T6 Aluminum Sheet	5	26.40	https://www.onlinemetals.com/merchant.cfm?pid=1244&step=4&showunits=inches&id=76⊤_cat=60				
	SunnySky X41085-17 KV380 Motor	\$						
	Z9504B 3/4" Bearing	S	7.77	https://www.amazon.com/29504B-Bearing-inch-Sealed-29504RST/dp/B0028BM3EW/ref=sr_1_5?s=industrial&ie=UTF8&q				
	PLA Filament	S	42.00	https://www.matterhackers.com/store/3d-printer-filament/pla				
	Linear Actuator	S	65.00	https://www.actuonix.com/Actuonix-PQ-12-P-Linear-Actuator-p/pq12-p.htm				
	1/4" 6061-T6 aluminum round	S	3.64	https://www.metalsdepot.com/aluminum-products/aluminum-round-bar?gclid=EAlalQobChMI1Z76pLWH3gIVTbjACh2FGw				
	Pillow Block Bearing	S	16.50	https://www.amazon.com/UCP204-12-Pillow-Block-Mounted-Bearings/dp/B01LXU87L9/ref=sr_1_2_sspa?ie=UTF8&qid=15.				
	Assortment of nuts and bolts	S	35.00					
Travel and Costs:	Travel and Competition costs	N/A		Department of Energy is covering the cost (within reasonable cost)				
	Total:	S	405.66					

References

[1]Ace Energy. (2018). *Us Department Of Energy Logo - Ace Energy*. [online] Available at: http://en.stonkcash.com/us-department-of-energy-logo/ [Accessed 15 Oct. 2018].

[2]Northern Arizona University, "NAU Collegiate Wind Competition 2017-2018," U.S. Department of Energy, Flagstaff, 2018.